**Acidity of Beverages Lab**

**Introduction:** Common beverages may be either acidic or basic. Fruit juices, for example, get their sweet taste from sugars and their sour or tart taste from weak acids such as citric acid. If the juice contains too much sugar, it will taste bland, but too much acid and the juice will taste sour. The concentration of acids in various consumer beverages may be determined by titration with sodium hydroxide.

**Background:** The main acids present in fruits and fruit juices are citric acid (in citrus fruits), tartaric acid (in grapes), and malic acid (in apples). All of these are characterized as weak acids.

![Organic acids in fruits and fruit juices](image)

**Figure 1.** Organic acids in fruits and fruit juices

The amount of citric acid in citrus fruit juices can be determined by titration with a standard solution of sodium hydroxide. A standard solution is one whose concentration is accurately known, usually to three significant figures. Citric acid is a tricarboxylic acid—it has three ionizable or “active” hydrogen atoms in its structure. One mole of citric acid therefore reacts with three moles of sodium hydroxide via the acid-base neutralization reaction shown in Equation 1.

![Equation 1](image)

Acid-base titrations are an extremely useful technique to determine the concentration of an acid or base in a sample. In titrating beverages such as orange juice, apple juice, and sodas that contain weak acids, the juice is called the analyte and a strong base is used as the titrant.

In the titration procedure, a sodium hydroxide solution of known molarity is carefully added using a buret to a measured volume of fruit juice containing an indicator. The exact volume of sodium hydroxide that must be added to reach the indicator endpoint is measured and then used to calculate the concentration of citric acid in the juice.

A sample setup for a titration is shown in Figure 2 on the next page, where a buret containing the titrant is clamped to the support stand and a beaker or flask containing the analyte is set on a stir plate. If a pH probe is inserted into the solution, a titration curve can be constructed by plotting the pH of the solution on the y-axis versus the volume of titrant added on the x-axis. The shape of the titration curve may be used to distinguish strong and weak acids in the analyte, and also permits graphical analysis of the equivalence point. At the equivalence point, moles of added titrant are stoichiometrically related to moles of analyte in the sample.

*Adapted from Flinn Scientific*
Choosing a suitable indicator for a titration is important for accurate results. Indicators signify the endpoint of a titration when a sudden change in the color of the analyte solution occurs. Indicators have different pH transition ranges and exhibit different colors in acidic versus basic solutions. The color changes arise because indicators are weak acids for which the acid form HIn and the conjugate base form In⁻ have different colors. An appropriate indicator for a titration is one whose color change occurs close to the theoretical pH of the equivalence point. Examples of indicators provided in this activity are shown in the following table, along with their colors and pH ranges.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>pH range</th>
<th>Color change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromthymol blue</td>
<td>6.0 – 7.6</td>
<td>Yellow to blue</td>
</tr>
<tr>
<td>Phenolphthalein</td>
<td>8.2 – 10.0</td>
<td>Colorless to pink</td>
</tr>
<tr>
<td>Thymol blue</td>
<td>8.0 – 9.6</td>
<td>Yellow to blue</td>
</tr>
<tr>
<td></td>
<td>1.2 – 2.8</td>
<td>Red to yellow</td>
</tr>
</tbody>
</table>

**Experiment Overview:** The purpose of this advanced inquiry lab is to conduct acid-base titrations and determine the concentration of acid in common beverages such as orange juice, pineapple juice, or white grape juice. The beverages contain weak acids, which will be titrated with a strong base, sodium hydroxide. The lab begins with an introductory activity to determine the proper indicator to use in the titration of acetic acid, a characteristic weak acid. The results provide a model for guided-inquiry design of a titration procedure to obtain titration curve data and calculate the molar concentration of acid in a beverage. The titration curve will be analyzed and the amount of acid in a typical serving size of bottle may also be determined. The identity of the acid in the beverage may be derived by reviewing the titration curve and reference information, and by consulting the ingredients label.

**Pre-Lab Questions:** (answer in your lab notebook in between the purpose and procedure sections)
1) Using the structural formula of citric acid shown in Figure 1, determine the molecular formula of citric acid and calculate its molar mass (g/mol).
2) Write a balanced net ionic equation for the neutralization of (a) hydrochloric acid and (b) acetic acid with sodium hydroxide.
3) The titration curves for hydrochloric acid and acetic acid with sodium hydroxide are shown below. Distinguish between the strong and weak acid in terms of the initial pH, the pH at the equivalence point, and the overall shape of the titration curve.
Supplies: Remember you must distinguish between Materials & Reagents in your lab notebook!

- Acetic acid, 0.10 M, 6 mL
- Sodium hydroxide, ~0.1 M
- Fruit juice (orange, pineapple, or white grape)
- Distilled water
- Beaker, 150-mL
- Disposable pipets
- Buret, 50-mL
- Graduated cylinders, 10-mL and 100-mL
- Indicators (bromthymol blue, phenolphthalein, thymol blue)
- Stirring rod
- Vernier LabQuest with pH meter
- Ring stand with buret and test-tube clamps
- Test tubes, small, 3
- Test tubes, large, 3
- Test tube rack
- Stirring rod
- Vials, 10-mL and 100-mL
- Test tube rack

Safety Precautions:
Dilute sodium hydroxide and acid solutions are irritating to skin and eyes. Avoid contact of all chemicals with eyes and skin. All food-grade items that have been brought into the lab are considered laboratory chemicals and are for lab use only. Do not taste or ingest any materials in the chemistry laboratory. Do not remove any remaining food items from the lab after they have been used in the lab. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Wash hands thoroughly with soap and water before leaving the lab.

Introductory Activity (Day 1)
1) Label three small test tubes B, P and U for the names of three indicators—bromthymol blue, phenolphthalein, and universal indicator—that will be studied in this activity.
2) Using a 10-mL graduated cylinder, measure and pour 2.0 mL of 0.1 M acetic acid into each test tube.
3) Add 1-2 drops of each indicator to the appropriate test tube.
4) Observe and record the initial indicator color in each test tube.
5) Rinse the graduated cylinder with water and dry the cylinder.
6) Measure 3.0 mL of 0.1 M sodium hydroxide in the graduated cylinder. Using a graduated pipet, add the NaOH solution in 1-mL increments to the acetic acid solution in test tube B. Observe and record the indicator color as the base is added.
7) Note the approximate volume of NaOH that has been added when the indicator color changes.
8) Repeat steps 6-7 two times using the acetic acid-indicator solutions in test tubes P and U.
9) Rinse the test tubes with water and dry them.

Guided-Inquiry Design and Procedure (Day 2)
Discuss the following questions with your lab partner and write your answers in your lab notebook. It is highly suggested that you get your procedure approved by Ms. Hall before completing Step 8 below. You may use the back of this packet to brainstorm if you wish!

1) Choose a suitable indicator for determining the endpoint in the neutralization of a weak acid with a strong base. Explain your reasoning based on the evidence obtained in the introductory activity as well as the titration curve data discussed in Pre-Lab Question 3.
2) Would you expect any differences in the choice of an appropriate indicator for the titration of a strong acid such as HCl? Why or why not?
3) Acidic beverages generally contain weak acids, such as citric acid in citrus fruit juices, tartaric or malic acids in other fruit juices, phosphoric acid in colas, and carbonic acids in seltzers. Write balanced net ionic equations and determine the mole ratio for the reaction of each acid with sodium hydroxide.

4) The titrant used in a titration experiment is a standard solution. Explain what this means, identify the titrant, and obtain the known molarity from Ms. Hall. Include this precise molarity in your Reagents list.

5) Review the setup shown in Figure 2 for a titration procedure.
   - The buret should be cleaned and then rinsed with the titrant before beginning the titration. Explain why this is necessary.
   - Is it necessary to know the precise volume of beverage that will be titrated? Explain.
   - Choose the type of volumetric glassware (flask, graduated cylinder or pipet, etc.) to measure the beverage that will be titrated in this experiment. Explain the choice.
   - It’s helpful to occasionally rinse the sides of the beaker or flask with distilled water during the titration procedure. Explain why it is not necessary to know the volume of rinse water.

6) Examine a buret and explain how to “read” the volume of titrant in the buret. What precision (number of significant figures) is allowed in these measurements?

7) What data must be measured and plotted to obtain the titration curve for an acidic beverage? What is an appropriate volume interval for obtaining this data during the titration? Explain your reasoning.

8) Draw a pictorial flow chart that illustrates the procedure for titrating a beverage to determine the concentration of weak acid, if present. Include the reagents needed, the glassware and equipment that will be used, and the appropriate measurements and observations that must be made. Review the hazards of the chemicals used in the procedure and write appropriate safety precautions that must be followed during the experiment.

9) Carry out a “rough” titration to estimate the volume of beverage to be used in the experiment. Pour 5 mL of juice into a large test tube, add 1-2 drops of indicator, and note the initial color. Add the titrant in 1 mL increments using a disposable pipet until the endpoint color is observed. Keep the test tube to be used as a “color standard” for the titration.

10) Choose an amount of beverage to be titrated that will require at least 10 mL but less than 20 mL of titrant. Explain why this range of titrant is optimum.

**Titration Procedure (Day 3)**

1) Carry out the titration to obtain the titration curve data, following the procedure you developed. Record the results in an appropriate data table.

2) If time allows, repeat the titration as needed to check the reproducibility of the endpoint measurement. It is not necessary to use the pH meter for the additional trials. Record results.

**Data Analysis & Calculations:** Plot the data and explain the titration curve results, including the initial pH and the pH at the equivalence point. Determine the molar concentration of citric acid in the beverage sample. Calculate the mass of citric acid contained in a bottle or serving size of the beverage, as specified on the Nutrition Facts label.
Post-Lab Questions:

1) Why is phenolphthalein an appropriate indicator for titration of a strong acid with a strong base? Explain based on the pH at the equivalence point and the titration range for phenolphthalein.

2) A 10.00-mL sample of HCl solution was transferred to an Erlenmeyer flask and diluted by adding about 40 mL of distilled water. Phenolphthalein indicator was added, and the solution was titrated with 0.215 M NaOH until the indicator just turned pink. The exact volume of NaOH required was 22.75 mL. Calculate the concentration of HCl in the original 10.00-mL sample.

3) One student accidentally “overshot” the endpoint and added 23.90 mL of 0.215 M NaOH. Is the calculated concentration of HCl likely to be too high or too low as a result of this error? Justify your answer.

4) Acid-base indicators are large organic molecules that behave as weak acids. The distinguishing characteristic of indicators is that the acid (HIn) and conjugate base (In\(^{-}\)) forms are different colors.

\[
\text{HIn(aq) + H}_2\text{O(l)} \rightarrow \text{In}^{-}(\text{aq}) + \text{H}_3\text{O}^{+}(\text{aq})
\]

\(\text{(Color A)} \quad \text{(Color B)}\)

The color of an indicator solution depends on pH and the relative amount of HIn and In\(^{-}\) at a given pH. Consider the following indicators and their acidic and basic colors, as well as the pH transition range for each.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>HIn</th>
<th>In(^{-})</th>
<th>pH Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alizarin*</td>
<td>Yellow</td>
<td>Red</td>
<td>5.5 – 6.8</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Purple</td>
<td>11.0 – 12.4</td>
</tr>
<tr>
<td>Bromthymol blue</td>
<td>Yellow</td>
<td>Blue</td>
<td>6.0 – 7.6</td>
</tr>
<tr>
<td>Phenolphthalein</td>
<td>Colorless</td>
<td>Pink</td>
<td>8.2 – 10.0</td>
</tr>
</tbody>
</table>

*Alizarin has two ionizable hydrogen atoms and three color forms, H\(_2\)In, HIn\(^{-}\), and In\(^{2-}\).

a) The intermediate or transition color of bromthymol blue is green. What are the relative proportions of HIn and In\(^{-}\) when bromthymol blue is green? Explain.

b) A colorless solution was tested with phenolphthalein, bromthymol blue, and alizarin. The solution was colorless with phenolphthalein, yellow with bromthymol blue and orange with alizarin. What is the pH of the solution? Justify your answer.